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1.0 MEACHAM CREEK CLIMATE CHANGE RISK 
ASSESSMENT 

1.1 INTRODUCTION 

Climate change is expected to increase stream temperatures in most rivers due in part to rising air 
temperature, as well as altered precipitation and snowmelt patterns that impact water levels and water 
flow (Battin et al., 2007, Beechie et al., 2012).  Reduced regional snowpack may be the foremost impact 
of climate change in the Pacific Northwest, limiting summer water supply (Mote et al., 2003).  Lower flows 
and higher air temperatures will lead to greater risk of extreme summer events in which water 
temperatures exceed survival thresholds.  Conversely, rain on snow events in a warmer climate could 
magnify spring high flows, threatening both biota and channel restoration projects.  Increases in stream 
temperature and changes in stream hydrology could have severe impacts on salmon species in the 
Pacific Northwest (Battin et al., 2007, Beechie et al., 2012).  A key goal for the ongoing restoration and 
enhancement of Meacham Creek is to help ensure channel and floodplain processes are in place that will 
help the system adapt to a changing climate and maintain habitat conditions where salmonids and other 
fish species can thrive during normal weather and survive during extreme events.  

The primary focus of the restoration design is on conditions that may be encountered over the first 10 
years of implementation.  A ten-year time horizon is not sufficient to identify a clear climate change signal, 
as conditions on a decadal time frame are likely to be dominated by natural oscillations such as El Niño 
events and the Pacific Decadal Oscillation; however, a 10-year time frame is appropriate for evaluating 
the benefits of the restoration plan in providing resilience against potential climate change impacts.  
Climate models are meant to project future climate (typically assessed with several decades of metrics) 
and not to predict future weather of any particular year or decade (Patte, 2014).  We therefore examine a 
50-year climate time horizon to evaluate the magnitude and type of climate-related risks that may be 
anticipated. 

The trajectory of future climate is uncertain, in part because it depends on the rate of greenhouse gas 
emissions and other mitigation efforts that may or may not occur.  Without reduction in emissions the rate 
of change is likely to gradually accelerate, while stronger efforts would result in stabilization.  The long 
residence time of carbon dioxide and other greenhouse gases in the atmosphere means, however, that 
some continued increases in temperature and other changes in climate are locked in.  A reasonable 
assumption for evaluating the magnitude of shorter-term (e.g., 1 to 10 year) risks is a linear interpolation 
relative to the 50-year time horizon – i.e., risks at 10 years can be evaluated based on one-fifth of the 
total change anticipated by 50 years.  If the estimate is based on more pessimistic emission scenarios 
that do not assume rapid stabilization of emissions the linear approach is somewhat conservative in the 
sense that it assumes a slightly faster rate of change in the initial decade than is likely to occur.   

1.2 DATA 

Risks associated with climate change need to be evaluated relative to current conditions.  Current 
condition monitoring also provides the basis for assessing how watershed processes may respond to 
changes in climate forcing.  Fortunately, an adequate baseline on water temperature, air temperature, 
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and flow has been collected for Meacham Creek.  Figure 1 shows the location of monitoring data used for 
this project. 

 

Figure 1.  Meacham Creek Watershed with Flow and Temperature Monitoring Locations 

1.2.1 Air and Water Temperature Data 
Air and water temperatures are strongly affected by local topographic and land cover conditions, so the 
analysis should start with local data.  It is also important that the analysis be constructed to reflect the 
current state of the local climate (e.g., conditions of the last several decades) rather than long-term 
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historical climate normal given regionally averaged warming of more than 1 °C in the Pacific Northwest 
over the last century (Mote et al., 2014). 

For observed air temperature, the weather station selected is the Natural Resources Conservation 
Service (NRCS) SNOw TELemetry (SNOTEL) station site 470 called Emigrant Springs.  The elevation of 
SNOTEL site 470 is 1,158 meters, and the average elevation of the Meacham Creek Watershed is 
approximately 1,181 meters so this station should be representative of average air temperature for the 
watershed.  SNOTEL site 470 has continuous air temperature data available since June 1980. 

For water temperature, there are multiple gaging locations along the Meacham Creek main stem at which 
hourly water temperature during the summer and fall was recorded from 2005 to 2014 (see Figure 1).  

 

Figure 2.  Average Summer Water Temperature, Meacham Creek Main Stem, 2005 to 2014 

1.2.2 Flow 
There is a USGS flow gage present on the downstream end of the Meacham Creek mainstem above the 
confluence with the Umatilla River and just downstream of the Bonifer Reach.  USGS gage 14020300 
(“Meacham Creek at Gibbon, Oregon”) has continuous average daily discharge data and annual peak 
series available since 1975.  This gage is used to identify long-term flow minima and maxima, and to 
provide a basis for estimating flow patterns under future conditions.  The gage has a drainage area of 176 
square miles, which is almost the entire Meacham Creek watershed. 
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1.3 FUTURE CLIMATE SCENARIOS 

1.3.1 Selection of Future Climate Scenarios 
The Intergovernmental Panel on Climate Change (IPCC) released their 5th Reassessment Report in 2013, 
which provides results from a round of GCM runs (CMIP5) that are appropriate for evaluating climate 
risks.  The CMIP5 results are available in a variety of online repositories that enable rapid screening of 
the range of potential future outcomes predicted by the suite of GCMs.  CMIP5 incorporates a number of 
refinements to the GCMs.  It also uses a different set of greenhouse gas concentration scenarios than the 
emissions-based scenarios that were used in CMIP3.  These greenhouse gas scenarios are now referred 
to as Representative Concentration Pathways (RCPs) and are based on a future target radiative forcing 
rather than inferring the radiative forcing from uncertain projections of future population growth, energy 
use patterns, and associated greenhouse gas emissions.  

RCP 4.5, for example, represents radiative forcing of 4.5 W/m2 in year 2100.  RCP 8.5 includes higher 
greenhouse gas concentrations, and thus greater radiative forcing and higher global atmospheric 
temperatures than RCP 4.5.  The difference among individual GCMs, however, is generally greater than 
the difference between RCP 4.5 and RCP 8.5 projections through at least the middle of the 21st century.  
The greatest impacts on precipitation and runoff do not necessarily line up with increases in temperature. 

The sheer number of climate model runs and the enormous size of the model output present challenges 
for quick screening-level assessments.  Simply put, it was not feasible to examine the results of every 
model and every scenario.   

Mote and Salathé (2010) evaluated biases in the global-scale climate model predictions for the Pacific 
Northwest.  No single GCM fell into the best five of the GCMs for prediction of both temperature and 
precipitation; likewise, no GCM fell into the worst five for both temperature and precipitation.  It is thus 
also not appropriate to select a specific GCM based on its perceived prediction skill for the area; instead, 
the suite of GCMs is more appropriate for analyzing the potential ensemble range of future climates (Mote 
et al., 2011).  This is consistent with findings of Knutti et al. (2010) and Pierce et al. (2009) that attempts 
to cull the best GCMs yields little difference in representing likely future change relative to a randomly 
selected subset of GCMs. 

It is also important to note that climate models typically resolve the earth surface at a scale of about 1 
degree (about 69 x 50 mi. in US) that will wash out local topographic effects.  Spatial downscaling is 
essential for watershed analysis, so we use the bias-corrected spatially downscaled climate model output 
of Maurer et al. (2007), which has been adjusted to a local spatial scale and adjusted to correct for biases 
relative to ground-based observation stations. 

To enable a manageable and cost-effective analysis, a reduced set of downscaled GCMs was selected 
from the RCP 8.5 scenarios that approximates the range of potential changes in temperature and 
precipitation.  This was done through use of EPA’s ClimaTools (beta tool under development at U.S. EPA 
Office of Research and Development, courtesy of Phillip Morefield), which performs automated 
summaries of monthly-level spatially downscaled GCM output from the “Downscaled CMIP3 and CMIP5 
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Climate and Hydrology Projections" archive at http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/ via 
the USGS CIDA THREDDS server (Maurer et al., 2007)1.   

To attempt to bound the range to which adaptation may be needed, we attempted to select a scenario 
that is near the upper 90th percentile for increases in air temperature in the June-August summer period, a 
scenario that is near the 90th percentile for decreases in precipitation during the late summer August-
September period, and a scenario that is near the 90th percentile for increases in precipitation during the 
March – May peak flow period.  The seasonal biplots produced by ClimaTools are shown in Figure 3 
through Figure 5.  In each plot, the intersection of the dashed lines shows the ensemble mean of 
projected changes from a ca. 1986 baseline to the period centered around 1065 (e.g., 50 years into the 
future).  For example, in Figure 3, the central tendency of change across all models is an increase in 
spring average air temperature of about 5 ½ °F and an increase in precipitation of about 11 percent – with 
considerable spread among the different models.  Extreme outliers – such as the almost 10 °F 
temperature increase predicted by model 24 – seem less likely to provide accurate predictions given the 
weight of evidence across all models.  A conservative, but more reasonable upper bound on effects is 
provided by moving nearer to the 90th percentile of models.  For example, in Figure 3, an upper bound 
estimate for risks associated with increased air temperature and relatively lower precipitation (in spring) 
can use model 32 (MIROC-ESM-CHEM). 

Based on examination of these plots, the three selected GCMs were MIROC-ESM-CHEM, GFDL-CM3, 
and MIROC-ESM.  Summary analysis at the monthly scale does not guarantee that extremes at the scale 
of individual events will be captured, but the selection procedure provides a reasonable set of upper 
bound samples. 

1.3.2 Hydrologic Responses 

The bias-corrected and statistically downscaled climate archive provides daily time series of air 
temperature and precipitation.  For the Meacham Creek analyses these climate variables need to be 
converted to hydrologic responses. 

The U.S. Bureau of Reclamation (Reclamation, 2014) has applied the Variable Infiltration Capacity or VIC 
model (Gao et al., 2009; Liang et al., 1994; Liang et al., 1996) to estimate hydrologic responses from the 
full set of downscaled CMIP5 archived climate scenarios.  The VIC model is a macro-scale hydrologic 
model that simulates watershed hydrology using estimates of vegetation, soil properties, topography, and 
daily weather variations.  The Reclamation effort applied VIC on a 1/8 degree spatial scale, with 
approximate grid-based routing for larger streams. 

As a national, GIS-based analyses on a grid, the VIC application does not provide a precise estimate of 
the hydrologic responses of individual watersheds.  Only limited calibration has been undertaken at a few 
large basin sites (Brekke et al., 2014).  For instance, in the Washington State application, VIC was 
calibrated and validated to runoff in the Columbia and Yakima rivers on streamflow at a few specific gage 
locations, but has not been calibrated to the many other stream gages present throughout the state. 

                                                      
1 We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is 
responsible for CMIP, and we thank the climate modeling groups for producing and making available their model 
output.  For CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison 
provides coordinating support and led development of software infrastructure in partnership with the Global 
Organization for Earth System Science Portals. 
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Figure 3.  Biplot of Change in Precipitation and Temperature Predicted by 38 Downscaled GCMs 
for the Meacham Creek Watershed, Spring 

 

Figure 4.  Biplot of Change in Precipitation and Temperature Predicted by 38 Downscaled GCMs 
for the Meacham Creek Watershed, Summer 
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Figure 5.  Biplot of Change in Precipitation and Temperature Predicted by 38 Downscaled GCMs 
for the Meacham Creek Watershed, Fall 

 

As a result, the VIC model results do not provide reliable predictors of the actual magnitude of streamflow 
on smaller streams and rivers; however, they do provide a reasonable representation of relative changes 
in streamflow responses.  Therefore, the results of GCM-based VIC runs are best used as an indicator of 
the potential relative changes in watershed streamflow responses that may occur under future climates.  
These relative changes can then be applied to historic series of watershed high and low flow extremes 
using statistical methods as described in the next section. 

1.4 METHODS: CONVERTING CLIMATE SCENARIOS TO 
ESTIMATES OF LOCAL IMPACT 

1.4.1 Air Temperature Deltas 
Daily maximum air temperature was used to compute 7-day average daily maximum (7dAM) air 
temperatures for historical and future time periods (1976-2005 and 2051-2080, respectively).  The 
difference between the 90th percentile 7dAM air temperatures for both periods were compared using 
results from the MIROC-ESM-CHEM GCM, with a difference of 6.58 degrees Celsius.  This critical 
temperature difference was used as an additive delta to increase the observed 7dAM air temperatures to 
the predicted future climate air temperature regime. 

1.4.2 Water Temperature 
The water temperature analysis focuses on the annual maximum of the 7-day average of daily maximum 
temperatures (7dAM), which is a commonly used basis for evaluating temperature impairments relative to 
support of salmonid populations and is the form in which Oregon’s numeric criteria for water temperature 
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are expressed (ODEQ, 2008).  Maximum stream temperature predictions under future climate are based 
on regression analysis as recommended by the Forest Service 
(http://www.fs.fed.us/rm/boise/AWAE/projects/stream_temperature.shtml).  A properly constructed 
regression approach can provide useful results without the large effort needed to construct and calibrate 
a detailed, physically based water temperature model.  Mantua et al. (2010) used a stream temperature 
regression model to evaluate water temperature distributions in Washington State under future climate 
conditions.  They did this using a logistic regression approach developed by Mohseni et al. (1998) that 
depends on air temperature and the natural limitations on the range of water temperature response 
imposed by the freezing point below and enhanced evaporative cooling at the higher end.  While 
Mantua’s model was developed for weekly average stream water temperature, a similar form can be used 
to predict 7-DADMax temperatures. 

The Mohseni model for weekly stream temperatures takes the following form: 

ௌܶ ൌ ߤ ൅
ߙ െ ߤ

1 ൅ ݁ఊሺఉି்ೌ ሻ 

In this equation, ௌܶ is the predicted weekly average stream water temperature in Celsius, and ௔ܶ is the 

average weekly air temperature.  The variables ߤ (minimum stream temperature), ߙ (maximum stream 

temperature), ߛ (steepest slope of the function), and ߚ (air temperature at the inflection point of the 
logistic curve) are all fitting parameters. 

Mohseni models were fit to all 8 monitoring stations along Meacham Creek with generally consistent 
results.  The three stations in or near the Bonifer Reach (527M1, 530M4, and 528M2) had root mean 
squared errors (RMSE) of 1.19 to 1.35 °C and generally track data well (e.g., Figure 6).  Model 
parameters for these stations are shown in Table 1. 

 

Figure 6.  Mohseni Model fit to 7-day Average Water Temperature, Meacham Creek Station 527 
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Table 1.  Mohseni Model optimized Parameters for Meacham Creek 7dAM Temperature 

Parameter, Statistic  528M2  530M4  527M1 

α  31.07  29.47  32.21 

µ  0.00  0.00  0.00 

γ  0.09  0.08  0.08 

β  13.18  12.43  15.50 

RMSE (°C)  1.35  1.19  1.35 

 

1.4.3 Flow 
Climate risks are evaluated relative to both high and low flows.  In both cases, the interest is in extreme 
values, such as the 100-year flood peak and 7-day 10-year recurrence low flow (7Q10), which are best 
analyzed with extreme value theory. 

Even more so than with temperature, flow estimates need to be adjusted to reflect local conditions and to 
eliminate biases that may be present in climate model predictions of local watershed conditions.  Quantile 
mapping (QM) methods, otherwise known as cumulative distribution function (CDF) matching methods, 
have long been used as a method to correct for local biases in GCM output.  The method first establishes 
a statistical relationship or transfer function between model outputs and historical observations, then 
applies the transfer function to future model projections (Panofsky and Brier, 1968) and has been 
successfully used as a downscaling method in various climate impact studies (e.g., Hayhoe et al., 2004). 

Using the notation of Li et al. (2010), for a climate variable x, the QM method can be written as: 

.࢚࢙࢐ࢊࢇ.࢖ି࢓ෝ࢞			 ൌ ૚ିࢉି࢕ࡲ	 ቀࢉି࢓ࡲ൫࢖ି࢓࢞൯ቁ 

where F is the CDF of either the observations (o) or model (m) for observed current climate (c) or future 
projected climate (p), and F-1 is the inverse cumulative distribution function.  Each CDF has a corresponding 
set of parameters, θ.  The bias correction for a future period is thus done by finding the corresponding 
percentile values for these future projection points in the CDF of the model for current observations (e.g., 
applying the fitted parameters for Fm-c to the model projected future values, xm-p), then re-applying the inverse 
of the fit to observed data (Fo-c

-1) to determine the adjusted percentiles of the future distribution. 

A weakness of the QM method is that it assumes that the climate distribution does not change much over 
time, and that, as the mean changes, the variance does not change, which is likely not true (e.g., Milly et 
al., 2008).  To address this, Li et al. (2010) proposed the equidistant quantile mapping (EQM) method, 
which incorporates additional information from the CDF of the model projection.  The method assumes 
that the difference between the model and observed value during the current calibration period also 
applies to the future period; however, the difference between the CDFs for the future and historic periods 
is also taken into account.  This is written as: 

.࢚࢙࢐ࢊࢇ.࢖ି࢓ෝ࢞ ൌ 	 ࢖ି࢓࢞ ൅ ૚ିࢉି࢕ࡲ	 ቀ࢖ି࢓ࡲ൫࢖ି࢓࢞൯ቁ െ	ିࢉି࢓ࡲ૚ ቀ࢖ି࢓ࡲ൫࢖ି࢓࢞൯ቁ	 
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Applying the EQM method results in the creation of a series of climate-adjusted and observation-adjusted 
future annual extreme values.  Finally, an extreme value distribution is fit to the adjusted future series, 
which can then be used to predict estimates of any desired recurrence interval. 

The analysis of both high and low extreme flow values in Meacham Creek is accomplished through 
application of the Gumbel distribution (Chow, 1964), a two-parameter, extreme value distribution that is 
frequently used for analysis of flood recurrence and can be applied for either extreme high values (right-
skewed) or low values (left-skewed).  The two parameters of the Gumbel distribution are the mode or 
location (u) and the dispersion or scale (α), which can be related to the mean and variance (see Benjamin 
and Cornell, 1970), while the distribution has a fixed skewness.  We use the Gumbel distribution rather 
than the log-Pearson Type III distribution recommended by the U.S. Water Resources Council (1967) 
because the latter distribution depends on the local and regional skew and it is unlikely that the climate 
model output is capable of accurately estimating higher-order moments such as skew. 

The EQM method with the Gumbel distribution is readily implemented through the SciPy package for the 
Python programming language (http://scipy.org) using the gumbel_r (right-skewed) and gumbel_l (left-
skewed) functions, both of which support methods for the cumulative distribution function (.cdf(x, loc, 
scale)) and inverse cumulative distribution function (.ppf(q, loc, scale)), along with parameter fitting to 
data (.fit).  The relevant distributions for the Meacham Creek analysis are then: 

 Fm-c: Gumbel fit to climate model annual maximum (or 7-day minimum) series for the historical 
period. 

 Fo-c: Gumbel fit to observed historical annual maximum (or 7-day minimum) series 
 Fm-p: Gumbel fit to climate model annual maximum (or 7-day minimum) series for the future period 

In the archived climate model runs, the historical period runs through 2005, and model projections run 
from 2006 through 2100.  The nominal future period for analysis is 2065, which is represented by a 30-
year time slice, 2050-2079.  Current conditions are also represented by a 30-year time slice, 1976 – 
2005.  The start date for the current conditions representation is also consistent with the available gage 
data for Meacham Creek. 

As an example of the process, consider updating the flood frequencies with results from the GFDL-CM 
climate model as downscaled and filtered through VIC.  The historical annual maximum series, which 
range from 878 to 5,930 cfs, is shown in Figure 7. 
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Figure 7.  Annual Maximum Daily Flow Series, Meacham Creek (USGS 1402300) 

The Gumbel extreme-value models were fit using depth units of mm/d over the watershed to correspond 
to the format of the VIC output.  Parameter estimates are shown in Table 2.  It will first be noted that the 
GCM model fit has parameters that are very different from the historical observations, with a smaller 
location parameter.  This indicates that the VIC model is biased low relative to observations – which is 
why we need to use the EQM method for adjustment.  The historical and future GCM fits do show an 
increase in location, which in turn indicates an increase in predicted values, although adjusted by a 
change in scale, which is inversely related to the event of a given recurrence.  These changes are 
translated back to the historical observations to produce the adjusted future extreme value model. 

Table 2.  Gumbel Parameter Estimates for Annual Maximum Daily Flow (mm/d) 

  Location (u)  Scale (α) 

Historical Observations  10.60  5.77 

GFDL‐CM, 1976‐2005  6.07  2.32 

GFDL‐CM, 2051‐2080  8.08  2.98 

Adjusted Future  12.61  6.43 

 

Prediction of an extreme high flow, QT, of a given recurrence, T (years), is accomplished using a 
frequency factor, KT, and the mean (µ) and standard deviation (σ) of the distribution: 

்ܳ ൌ ߤ	 ൅  ߪ்ܭ

For the Gumbel distribution, the frequency factor is given by (Chow, 1964): 

்ܭ ൌ 	െ	
√6
ߨ
	ሼ0.577 ൅ lnሾlnሺܶሻ െ ln	ሺܶ െ 1ሻሿሽ 
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The mean and standard deviation of the right-skewed Gumbel distribution are related to the location and 
scale parameters through (Bras, 1990): 

ߤ ൌ ݑ ൅	
0.577
ߙ

ଶߪ			,	 ൌ 	
1.645
ଶߙ

 

Application of these equations allows estimation of future high extremes of any desired recurrence based 
on the adjusted future parameter distribution obtained through application of the EQM method.  A similar 
analysis can be applied to the series of annual minima using a left-skewed Gumbel distribution, which is a 
symmetric mirror image of the right-skewed distribution (see Benjamin and Cornell, 1970). 

1.5 RESULTS 

1.5.1 Future Water Temperature 
Using the calibrated Mohseni model parameters, the future climate air temperature deltas from MIROC-
ESM-CHEM (Section 1.4.1) were used to predict 7-day water temperature series under mid-century 
climate at the Meacham Creek temperature monitoring locations in and near the Bonifer Reach.  Average 
summer 7-day water temperatures are predicted to increase on average by about 3.2 °C across the 
Meacham Creek monitoring stations in and near Bonifer Reach (Table 3).  Note that the water 
temperature response is buffered relative to the change in atmospheric temperature:  Water temperature 
is predicted to change relative to the change in air temperature at the 7-d scale (about 6.58 °C) by a ratio 
of about 0.48.  This is somewhat less than the “typical” ratio of changes in summer average water 
temperature to change in air temperature of 0.67 reported by Isaak et al. (2011). 

The 7dAM water temperatures increase by a similar amount, on average; however, the highest 7dAM for 
the 10-year monitoring period is predicted to increase by a smaller amount (Table 4) as the GCM predicts 
greater air temperature increases for cool years than for warm years. 

Table 3.  Average Summer 7-day Water Temperatures (°C), based on 2005-2014 Monitoring and 
MIROC-ESM-CHEM Climate Projections 

Station  Observed  Future (ca. 2065)  Difference 

527M1  20.6  23.9  3.3 

528M2  21.8  25.0  3.2 

530M4  20.8  23.6  2.9 

 

Table 4.  Highest Summer 7dAM Water Temperatures (°C), based on 2005-2014 Monitoring and 
MIROC-ESM-CHEM Climate Projections 

Station  Observed  Future (ca. 2065)  Difference 

527M1  26.0  27.4  1.4 

528M2  27.6  28.0  0.4 

530M4  25.6  26.4  0.8 
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1.5.2 Future High Flows 
Future daily peak flows were estimated using the EQM statistical methods described in Section 1.4.3 to 
adjust the annual maximum series observed at USGS gage 14020300.  Gumbel distributions were fit to 
both the observed (1976-2005) and adjusted future (ca. 2065) annual peaks for both the GFDL-CM3 and 
MIROC-ESM GCMs.  The fitted extreme value distribution was then used to predict daily flood flows of 
different recurrence intervals, as shown in Table 5 and Figure 8.  These results suggest an increase in 
the magnitude of potentially damaging flood flows, as is expected for a warmer climate in which the 
intensity of rainfall events and rapidity of snowmelt increases.  For example, the 100-yr 24-hr flow is 
projected to increase by up to 21 percent by mid-century.  The statistical model can provide predictions 
beyond the 100-year recurrence, but these are not presented as the estimates based on model fit to 30 
years of data are highly uncertain. 

Table 5.  24-hr Peak Flow Recurrences for Historical (1976-2005) and Future (ca. 2065) Climate 
Projected by GDFL-CM3 and MIROC-ESM 

Recurrence 
Interval (years) 

Observed Historical 
High Flows (cfs) 

GDFL‐CM3 Future 
High Flows (cfs) 

MIROC‐ESM Future 
High Flows (cfs) 

2  2,370  2,789  2,564 

10  4,396  5,046  5,152 

25  5,416  6,183  6,454 

50  6,173  7,026  7,420 

100  6,924  7,863  8,379 
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Figure 8.  Peak Daily Flow Recurrence Curves for Meacham Creek at Gage for Historical 
Conditions and Mid-Century Conditions Predicted by GDFL-CM3 and MIROC-ESM Models 

1.5.3 Future Low Flows 
Similar statistical methods can be used to estimate the future probability distribution of 7-day average low 
flows.  The approach is similar to that developed by the USGS for estimating low-flow frequencies using 
the log Pearson III distribution (Riggs, 1972).  Here, recurrence intervals for 7-day average low flows 
under future climate were estimated by applying the EQM method with the left-skewed Gumbel 
distribution.  Results are shown in Table 6 and Figure 9 

Annual low flows for both climate scenarios for historical and future periods were scaled to the low flow 
timeseries of the observed flow at USGS gage 14020300.  The low flows were scaled using the EQM with 
the left-skewed Gumbel Method, then future flow volumes were tabulated at various recurrence intervals.  
The climate model projections show a decrease in 10-yr low flows but a possible slight increase in low 
flows at larger recurrence intervals.  This occurs because the climate models predict a change in both the 
location and the scale of the Gumbel distribution under future climate. 
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Table 6.  7-day Low Flow Recurrences for Historical (1976-2005) and Future (ca. 2065) Climate 
Projected by GDFL-CM3 and MIROC-ESM 

Recurrence 
Interval (years) 

Observed Historical 
Low Flows (cfs) 

GDFL‐CM3 Future 
Low Flows (cfs) 

MIROC‐ESM Future 
Low Flows (cfs) 

2  9.9 7.0 3.5 

10  6.9 5.4 2.7

25  5.4 4.5 2.3

50  4.3 3.9 2.0

100  3.2 3.3 1.7

 

 

 

Figure 9.  7-day Low Flow Recurrence Curves for Meacham Creek at Gage for Historical 
Conditions and Mid-Century Conditions Predicted by GDFL-CM3 and MIROC-ESM Models 

For low flows, there is particular interest in 7Q10 flow, the 7-day low flow that occurs, on average, once 
every 10 years.  The estimated 7Q10 flow under recent historical conditions at USGS gage 14020300 is 
estimated at 6.93 cfs.  By 2065, a flow of 6.93 cfs or less is estimated to occur on average about every 
2.2 years for the GDFL-CM3 climate projections and essentially every year for the MIROC-ESM climate 
projections. 
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1.6 SUMMARY 

A rapid scoping analysis was undertaken to evaluate potential changes in water temperature, high flows, 
and low flows in Meacham Creek under potential changes in climate through approximately 2065.  These 
results suggest that planning and design should account for increases in average 7-day water 
temperatures on the order of 3.2 °C by 2065 and increases in critical 7-day summer water temperatures 
on the order of 1.4 °C.  Assuming a linear trend, these are equivalent to increases of 0.64 and 0.28 °C 
over the next 10 years. 

Peak flows are expected to increase, while critical low flows will decrease.  The 100-yr 24-hr flood flow is 
estimated to increase by up to 21 percent by mid-century (4.2 percent over 10 years).  The 7Q10 low flow 
is estimated to decrease, possibly by more than half by mid-century.  Over the next ten years this trend 
equates to a decrease of approximately 12 percent. 

The scoping analyses presented here could be further refined in several ways.  For flows, the VIC model 
projections are not calibrated to Meacham Creek and may introduce biases (although the EQM approach 
is designed to minimize the impacts of such biases).  A site-specific and calibrated watershed response 
model could improve the representation of hydrologic response to changes in climate forcing.  For 
prediction of critical water temperatures, the Mohseni model is fit to site data, but is also an empirical 
approach that assumes that the underlying relationship between air temperature and water temperature 
does not change under future climate.  A more detailed temperature response model could be used to 
assess the impact of changes in other meteorological inputs, such as humidity, as well as the influence of 
changes in critical period flow on water temperature.  Finally, evaluation of the full suite of available 
climate model projections would provide additional information on the range of potential responses of 
both flow and water temperature to which adaptation may be needed. 
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